Acta Cryst. (1977). B33, 1299-1301

Barium Cobalt Trioxide

By Hideki Taguchi, Yasuo Takeda,* Fumikazu Kanamaru, Masahiko Shimada and Mitsue Koizumi

The Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka 565, Japan
(Received 7 October 1976; accepted 17 December 1976)

Abstract

BaCoO}_{3}\), hexagonal, $\mathrm{P6}_{3} / m m c, a=$ 5.645 (3), $c=4.752$ (3) $\AA, Z=2, D_{m}=6 \cdot 1, D_{x}=6.18$ $\mathrm{g} \mathrm{cm}^{-3}$. The structure is characteristic with linear chains of face-sharing CoO_{6} octahedra. BaCoO_{3} can be regarded as a polyacid salt built up from chains of $\left[\mathrm{CoO}_{3}^{2-}\right]_{n}$ groups held together by Ba^{2+} ions.

Introduction. The crystal used for structure determination was prepared at a high pressure (Shimada, Takeda, Taguchi, Kanamaru \& Koizumi, 1975), and was about $0.1 \times 0.1 \times 0.3 \mathrm{~mm}$. The Laue symmetry was found to be $6 / \mathrm{mmm}$. The systematic absences determined from precession and Weissenberg photographs were $h h l$ for $l=2 n+1$. Although three space groups ($P \overline{6} 2 c, P 6_{3} m c$ and $P 6_{3} / m m c$) were possible, it was decided initially to refine the structure in the centrosymmetric $P 6_{3} / \mathrm{mmc}$.

All reflexions up to $\sin \theta / \lambda=1.0$ were measured with Zr -filtered Mo $K a$ radiation on a Rigaku automatic four-circle diffractometer, with a scintillation counter and a $\theta-2 \theta$ scan technique. The intensities of symmetrically related reflexions were averaged to give 226 independent reflexion data. No absorption or extinction corrections were applied.

The three-dimensional Patterson map, which was calculated with RSSFR-5 in the UNICS program system (Sakurai, 1967), indicated that the approximate positional parameters were $2(a)(0,0,0)$ for Co, $2(d)$ $\left(\frac{1}{3}, \frac{2}{3}, \frac{3}{4}\right)$ for Ba , and $6(h)\left(x, 2 x, \frac{1}{4}\right)$ with $x=\frac{1}{6}$ for O in space group $P 6_{3} / m m c$. A block-diagonal least-squares refinement was carried out with the program $H B L S$-V (Ashida, 1973). In the refinement procedure, neutral atomic form factors were taken from International Tables for X-ray Crystallography (1962). Weights were assigned according to the function $w=\left(\sigma^{2}+a\left|F_{o}\right|+\right.$

[^0]Table 1. Positional parameters

	Position	x	y	z
	$2(d)$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{3}{4}$
Ba	$2(a)$	0	0	0
Co	$6(h)$	$0.1482(10)$	$-0.1482(10)$	0.25

$\left.b\left|F_{o}\right|^{2}\right)^{-1}$, where $a=0.0743$ and $b=0.0060$. Refinement was continued until the maximum shift of each parameter was less than one twentieth of its e.s.d. The final conventional R value was 0.060 , while $R_{w}\{=$ $\left.\left[\Sigma w\left(\left|F_{o}\right|-\mid F_{c}\right)^{2} / \Sigma w \mid F_{0}\right]^{1 / 2}\right\}$ was $0 \cdot 106$. The final positional parameters are listed in Table $1 . \dagger$ In the absence of any stereochemical evidence to the contrary, $P 6_{3} / \mathrm{mmc}$ is assumed to be correct.

Discussion. BaCoO_{3} powder was first synthesized by Gushee, Katz \& Ward (1957). On the basis of powder work, they reported that BaCoO_{3} was isostructural with BaNiO_{3}. The crystal structure of BaNiO_{3} is described in terms of hexagonally close-packed BaO_{3} layers and Ni ions located in the oxygen octahedra: these share a pair of opposite faces to form $\left(\mathrm{NiO}_{3}\right)_{n}$ columns parallel to \mathbf{c}.
\dagger Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32396 (4 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars. Chester CH1 1NZ, England.

Fig. 1. A representation of the crystal structure of BaCoO_{3} viewed along c .

Fig. 2. A perspective view of the anionic chain in BaCoO_{3}.

However, BaNiO_{3} does not have an ideal hexagonally close-packed arrangement of Ba and O ions, but all the O ions are remarkably close to Ni ions and form a trigonally distorted octahedron; the $\mathrm{Ni}^{4+}-\mathrm{O}$ distance is much shorter than that expected from the ideal ionic model (Takeda, Kanamaru, Shimada \& Koizumi, 1976).

Figs. 1 and 2 show the Co environment and the hexagonal close packing of the Ba and O ions in BaCoO_{3}.

The structure was found to be isostructural with BaNiO_{3}, and the positional parameters are almost the same as those of BaNiO_{3}. Within the BaO_{3} layers, the $\mathrm{O}-\mathrm{O}$ distance is $2.511 \AA$, while the $\mathrm{O}-\mathrm{O}$ distance between the layers is $2.783 \AA$. The $\mathrm{Ba}-\mathrm{O}$ distance within the layer is $2.828 \AA$. Although these lengths must be equal for ideal hexagonal close packing of Ba and O , the $\mathrm{O}-\mathrm{O}$ distance within the layer is much shorter than that between layers. These three oxygens forming short $\mathrm{O}-\mathrm{O}$ distances make a triangular plane sharing the faces of the CoO_{6} octahedra columns. The Co^{4+} ions in the columns face each other at a very short distance of $2.38 \AA\left(2.41 \AA\right.$ in $\left.\mathrm{BaNiO}_{3}\right)$; this will produce a large electrostatic repulsion between the metal ions. As the O atoms of face-sharing triangles mutually approach, as mentioned above, the O ions are considered to screen the Coulomb interaction between Co^{4+} ions and weaken the repulsion. The Ba^{2+} ions play a role in adjusting the spacing between these chains.

References

Ashida, T. (1973). The Universal Crystallographic Computing System - Osaka. The Computation Centre, Osaka Univ.
Gushee, B. E., Katz, L. \& Ward, R. (1957). J. Amer. Chem. Soc. 79, 5601-5603.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Sakurai, T. (1967). UNICS Program System, Cryst. Soc. Japan.
Shimada, M., Takeda, Y., Taguchi, H., Kanamaru, F. \& Koizumi, M. (1975). J. Cryst. Growth, 29, 75-76.
takeda, Y., Kanamaru, F., Shimada, M. \& Koizumi, M. (1976). Acta Cryst. B32, 2464-2466.

Bis(3,5-dimethyl-1,2-dithiolium) Tetrachlorocobaltate(II)

By Graham A. Heath, Peter Murray-Rust and Judith Murray-Rust
Department of Chemistry, University of Stirling, Stirling FK9 4LA, Scotland

(Received 22 December 1976; accepted 7 January 1977)

[^1]Introduction. Blue-green crystals of the title compound (Heath, Martin \& Stewart, 1969a,b)* suitable for X-ray examination were obtained from ethanolic HCl . Systematic absences (from Weissenberg and precession photographs) $h k l, h+k$ odd and $h 0 l, l$ odd indicated space groups $C c$ or $C 2 / c$. The latter was assumed since

[^2]
[^0]: * Present address: Synthetic Crystal Research Laboratory, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464, Japan.

[^1]: Abstract. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{Cl}_{4} \mathrm{CoS}_{4}, M_{r}=463 \cdot 2$, monoclinic, $C 2 / c, a=17.67(2), b=7.70(1), c=15.78$ (2) $\AA, \beta=$ 122.22(1) ${ }^{\circ}$ from diffractometer measurements (Mo $K \bar{\alpha}$ radiation); $V=1817.9 \AA^{3}, Z=4, F(000)=924$, $\mu=17.70 \mathrm{~cm}^{-1}$. The compound is isostructural with the corresponding tetrachloroferrate(II) |Freeman, Milburn, Nockolds, Mason, Robertson \& Rusholme, Acta Cryst. (1974), B30, 886-910].

[^2]: * Hereafter HMS.

